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Abstract. We study some aspects of Maldacena’s large-N correspondence between N = 4 superconformal
gauge theory on the D3-brane and maximal supergravity on AdS5 ×S5 by introducing macroscopic strings
as heavy (anti-) quark probes. The macroscopic strings are semi-infinite Type IIB strings ending on a
D3-brane world-volume. We first study deformation and fluctuation of D3-branes when a macroscopic
BPS string is attached. We find that both dynamics and boundary conditions agree with those for the
macroscopic string in anti-de Sitter supergravity. As a by-product we clarify how Polchinski’s Dirichlet and
Neumann open string boundary conditions arise dynamically. We then study the non-BPS macroscopic
string–anti-string pair configuration as a physical realization of a heavy quark Wilson loop. We obtain the
QQ̄ static potential from the supergravity side and find that the potential exhibits non-analyticity of the
square-root branch cut in the ‘t Hooft coupling parameter. We put forward non-analyticity as a prediction
for large-N gauge theory in the strong ‘t Hooft coupling limit. By turning on the Ramond–Ramond zero-
form potential, we also study the θ vacuum angle dependence of the static potential. We finally discuss the
possible dynamical realization of the heavy N -prong string junction and of the large-N loop equation via
a local electric field and string recoil thereof. Throughout comparisons of the AdS–CFT correspondence,
we find that a crucial role is played by “geometric duality” between the UV and IR scales in directions
perpendicular to the D3-brane and parallel ones, explaining how the AdS5 spacetime geometry emerges
out of four-dimensional gauge theory at strong coupling.

1 Introduction

With better understanding of D-brane dynamics, new ap-
proaches to outstanding problems in gauge theory have
become available. One of these problems concerns regard-
ing the behavior of SU(N) gauge theory in the large-N
limit [1]: N → ∞ with the ‘t Hooft coupling g2eff = g

2
YMN

fixed. Planar diagram dominance as shown first by ‘t Hooft
has been regarded as indicative of a certain connection
to string theory, but it has never become clear how and
to what extent the string is related to the fundamental
string. Recently, built on an earlier study of the near-
horizon geometry of D- and M-branes [2] and their ab-
sorption and Hawking emission processes [3], Maldacena
has put forward a remarkable proposal for the large-N
behavior [4]. According to his proposal, the large-N limit
of d-dimensional conformal field theories with sixteen su-
percharges is governed in a dual description by maximal
supergravity theories (chiral or non-chiral depending on
d) with thirty-two supercharges that are compactified on
AdSd+1 times the internal round sphere. Extensions to
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non-conformally invariant field theories [5] and new results
[6–9] extending Maldacena’s proposal have been reported.
The most tractable example of Maldacena’s proposal

is four-dimensional N = 4 super-Yang–Mills theory with
gauge group SU(N). This theory is superconformally in-
variant with vanishing beta function and is realized as
the world-volume theory of N coincident D3-branes of
Type IIB string theory. The latter produces the near-
horizon geometry of AdS5 × S5, where λIIB = g2YM, we
have the radius of curvature g1/2eff �s and a self-dual flux
Q5 = (1/2π)

∫
S5
H5 = N units. By taking λIIB → 0 while

keeping geff large in the large-N limit, the classical Type
IIB string theory is approximated by compactified super-
gravity.
In this paper, we study some aspects of the large-N be-

havior of superconformal d = 4, N = 4 Yang–Mills theory
with gauge group SU(N) from the perspectives of Malda-
cena’s proposal. In particular, we pay attention to charged
particles in the theory. It is well known that conformal
invariance imposes a vanishing electric current as an op-
erator equation, leading only to a trivial theory. It has
been argued that [10], to obtain a non-trivial conformally
invariant fixed point, there must be non-vanishing elec-
tric and magnetic states in the spectrum. Then it would
be most desirable to investigate the theory with charged
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particles in detail. Massless charged particles, even though
being of our ultimate interest, would be rather delicate be-
cause their long-range fields are exponentially suppressed
due to conformal invariance. Thus, in this paper, we would
like to concentrate exclusively on heavy electric and mag-
netic particles.
The idea is very simple. The spectrum of d = 4, N = 4

super-Yang–Mills theory contains BPS spectra carrying
electric and magnetic charges (p, q). Extending Malda-
cena’s conjecture, one expects that the correspondence
between gauge theory and supergravity continues to hold
even when heavy charged particles are present. In partic-
ular, the dynamics of BPS particles should match gauge
theory and supergravity descriptions. On the supergravity
side, charged particle may be described by a macroscopic
Type IIB (p, q) string that ends on the D3-branes. For
example, ending on a D3-brane, a macroscopic fundamen-
tal (1, 0) string represents a static, spinless quark trans-
forming in the defining representation of the SU(N) gauge
group. On the gauge theory side, one can also describe the
BPS charged particles as world-volume solitons on the D3-
brane. Using the Born–Infeld world-volume action, Callan
and Maldacena [11] have shown that the world-volume
BPS solitons are identical to the Type IIB (p, q) string
ending on the D3-branes. Thus, equipped with both su-
pergravity and world-volume descriptions, one would be
able to test Maldacena’s conjecture explicitly even when
the conjecture is extended to include heavy charged states.
Using the aforementioned correspondence between

heavy charged states and macroscopic strings, we will
prove that the static quark–anti-quark potential comes
out of the regularized energy of a static configuration of
open Type IIB string in an anti-de Sitter supergravity
background. We will find that the static potential is of
Coulomb type, the unique functional form being consis-
tent with the underlying conformal invariance [21], and,
quite surprisingly, it is proportional to the square-root of
the ‘t Hooft coupling parameter. We interpret the non-
analyticity as an important prediction of Maldacena’s con-
jecture on super-Yang–Mills theory in the large-N , strong
‘t Hooft coupling limit.
In due course of this study, we will elaborate more

on boundary conditions that the world-volume BPS soli-
ton satisfies at the throat. According to Polchinski’s pre-
scription, open string coordinates in perpendicular and
parallel directions to the D-brane should satisfy Dirichlet
and Neumann boundary conditions, respectively. For the
world-volume BPS soliton, we will show that these bound-
ary conditions arise quite naturally as a consequence of a
self-adjoint extension [14,15] of small fluctuation opera-
tors along the elongated D3-brane world-volume of BPS
soliton.
This paper is organized as follows. In Sect. 2, we study

the dynamics of a macroscopic Type IIB string, using
the Nambu–Goto formulation, in the background of mul-
tiple D3-branes. In Sect. 3, the result of Sect. 2 is com-
pared with the dynamics of the Type IIB string realized
as a world-volume BPS soliton on the D3-brane. We find
that the two descriptions are in perfect agreement. As a

bonus, we will be able to provide a dynamical account of
Polchinski’s D-brane boundary conditions out of the self-
adjointness of the low-energy string dynamics. In Sect. 4,
we also study large-N resummed Born–Infeld theory and
find the D3-brane world-volume soliton that corresponds
to a semi-infinite string and to massive charged particle on
the D3-brane. In Sect. 5, we consider a heavy quark and
anti-quark pair configuration, again, from both the large-
N resummed Born–Infeld and the supergravity sides. As a
prototype non-perturbative quantity, we derive the static
inter-quark potential. Results from both sides are qualita-
tively in good agreement and, most significantly, display
a surprising non-analytic behavior with respect to the ‘t
Hooft coupling. We also point out that the static inter-
quark potential suggests a dual relation between the ul-
traviolet (infrared) limit of the supergravity side and the
infrared (ultraviolet) limit of the gauge theory side, which
we refer to as UV–IR geometry duality. In Sect. 6, we spec-
ulate on the possible relevance of conformal invariance to
the large-N Wilson loop equation and the realization of
exotic hadron states in the large-N gauge theory via N -
pronged string networks on the supergravity side.

2 String on D3-brane:
Supergravity description

Consider N coincident planar D3-branes (thus carrying a
total Ramond–Ramond charge N ≡ ∮

S5
H5 =

∮
S5
H∗
5 ), all

located at x⊥ = 0. The supergravity background of the
D3-branes is given by

ds2D3 = Gµνdxµdxν

=
1√
G

(
−dt2 + dx2||

)
+

√
G

(
dr2 + r2dΩ25

)
, (1)

where

G(r) = 1 + g2eff

(√
α

′

r

)4
. (2)

In the strong coupling regime, geff → ∞, the geometry de-
scribed by the near-horizon region is given by the anti-de
Sitter spacetime AdS5 times S5. For extremal D3-branes,
the dilaton field is constant everywhere. This being so, up
to the string coupling factors the supergravity background
(1) coincides with the string sigma-model background.
We would like to study the dynamics of a Type IIB

fundamental test string that ends on the D3-branes1. Let
us denote the string coordinatesXµ(σ, τ), where σ, τ para-
metrize the string worldsheet. The low-energy dynamics of
the test string may be described in terms of the Nambu–
Goto action, whose Lagrangian is given by

LNG = T(n,0)

∫
dσ

√
−dethab + Lboundary, (3)

1 By SL(2,Z) invariance of Type IIB string theory, it is
straightforward to extend the results to the situation where
the test string is a dyonic (p, q) string [11]
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where T(n,0) = n/2πα′ denotes the string tension (n being
the string multiplicity, which equals the electric charge on
the D3-brane world-volume), Lboundary signifies the ap-
propriate open string boundary condition at the location
of the D3-brane, which we will discuss in more detail later,
and hab is the induced metric of the worldsheet:

hab = Gµν(X)∂aX
µ∂bX

ν . (4)

For the background metric Gµν , our eventual interest is
the case geff → ∞, so that the anti-de Sitter spacetime is
zoomed in. In our analysis, however, we will retain the
asymptotic flat region. Quite amusingly, from such an
analysis one will be able to extend Polchinski’s descrip-
tion of the boundary conditions for an open string ending
on the D-brane in the gst = 0 limit, where an exact con-
formal field theory description is valid, to an interacting
string (gst �= 0) regime.
To find the relevant string configuration, we takeX0 =

t = τ and decompose nine spatial coordinates of the string
into

X =X || +X⊥. (5)

Here, X ||,X⊥ represent test string coordinates longitudi-
nal and transverse to the D3-brane. The transverse coordi-
natesX⊥ may be decomposed further into a radial coordi-
nate α′U and angular ones Ω5. In the background metric
(1), a straightforward calculation yields (̇ ≡ ∂t,

′ ≡ ∂σ)

h00 =
√
GẊ

2
⊥ − 1√

G

(
1− Ẋ

2
||
)
,

h11 =
√
G

(
X ′

⊥
2
)
+

1√
G

X ′
||
2
,

h01 =
1√
G

Ẋ || · X ′
|| +

√
GẊ⊥ · X ′

⊥, (6)

where G = G(|X⊥|). From this, for a static configuration
is derived the Nambu–Goto Lagrangian:

LNG →
∫
dσ

√
X ′

⊥
2 +

1
G

X ′
||
2
. (7)

From the equations of motion X ′
⊥√

X ′
⊥
2 + 1

GX ′
||
2

′

= X ′
||
2(∇x⊥G

−1),


1
G

X ′
||√

X ′
⊥
2 +

1
G

X ′
||
2


′

= 0, (8)

it is easy to see that the solution relevant to our situation
is when X ′

|| = 0 (a class of solutions with X ′
|| �= 0 cor-

responds to a string bent along the D3-brane, which will
be treated in some detail in Sect. 4). Solving the equation
for X⊥, one finds σ = α′U and Ω5 constant. This yields
precisely the static gauge configuration

X0 = t = τ, α′U = r. (9)

2.1 Weak coupling limit

Consider the low-energy dynamics of the macroscopic test
string in the weak coupling regime, λIIB → 0. In this
regime, the radial function part in (2) can be treated
perturbatively. Expanding the Nambu–Goto Lagrangian
around the static gauge configuration, (9), one derives the
low-energy effective Lagrangian up to quartic order:

LNG =
T(n,0)

2

∫ ∞

0
dr

[(
Ẋ
2
|| − 1

G
X ′

||
2
)

(10)

+
(
GẊ

2
⊥ − X ′

⊥
2
)
+

(
Ẋ || · X ′

⊥ − Ẋ⊥ · X ′
||
)2]

.

At the boundary r = 0, where the test string ends on the
D3-brane, a suitable boundary condition has to be sup-
plemented. The boundary condition should reflect the fact
that the string is attached to the D3-brane dynamically
and render the fluctuation wave operator self-adjoint.
Let us introduce a tortoise worldsheet coordinate σ:
dr
dσ

=
1√
G

≡ cos θ(r) (−∞ < σ < +∞), (11)

in terms of which the spacetime metric (1) becomes con-
formally flat:

ds2D3 =
1√
G

(
−dt2 + dx2|| + dσ2

)
+

√
Gr2dΩ25 . (12)

The quadratic part of the low-energy effective Lagrangian
is

LNG =
T(n,0)

2

∫ +∞

−∞
dσ

[
1√
G

(
(∂tX ||)2 − (∂σX ||)2

)
+

√
G

(
(∂tX⊥)2 − (∂σX⊥)2

) ]
, (13)

which reflects explicitly the conformally flat background
(12). The Lagrangian clearly displays the fact that both
parallel and transverse fluctuations propagate at the speed
of light, despite the fact that both mass density and ten-
sion of the string are varying spatially.
Note that, in the tortoise coordinate of (11) and (12),

σ → −∞ corresponds to the near D3-brane r → 0, while
σ → +∞ is the asymptotic spatial infinity r → ∞. In the
limit geff → ∞, the boundary of anti-de Sitter spacetime
is at σ = 0. Therefore, to specify dynamics of the open
test string, appropriate self-adjoint boundary conditions
have to be supplemented at σ = −∞ and at σ = 0 if
the anti-de Sitter spacetime is zoomed in. To analyze the
boundary conditions, we now examine scattering of low-
energy excitations off the D3-brane.
For a monochromatic transverse fluctuation X⊥(σ, t)

= X⊥(σ)e−iωt, the unitary transformation X⊥(σ) →
G−1/4Y ⊥(σ) combined with a change of variables σ →
σ/ω, r → r/ω, geff → geff/ω, where ε ≡ g

1/2
eff ω, yields the

fluctuation equation into a one-dimensional Schrödinger
equation form:[

− d2

dσ2
+ V⊥(σ)

]
Y ⊥(σ) = +1 · Y ⊥(σ), (14)



382 S.-J. Rey, J.-T. Yee: Macroscopic strings as heavy quarks: Large-N gauge theory and anti-de Sitter supergravity

where the analog potential V (σ) is given by

V⊥(σ) = − 1
16
G−3 [5(∂rG)2 − 4G(∂2rG)

]
=

5ε−2

(r2/ε2 + ε2/r2)3
. (15)

For low-energy scattering, ε→ 0, the potential may be ap-
proximated by a δ function2. We now elaborate the justi-
fication of their approximation. This analog potential has
a maximum at r = ε. In terms of the σ coordinates, this is
again at σ ≈ O(ε). We thus find that the one-dimensional
Schrödinger equation has a delta function-like potential.
For low-energy scattering, the delta function gives rise to
the Dirichlet boundary condition. An interesting situation
is when geff → 0. The distance between r = 0 and r = ε
becomes zero. Therefore, the low-energy scattering may be
described by a self-adjoint extension of the free Laplacian
operator at r = 0.
Similarly, for a monochromatic parallel fluctuation

X ||(t, σ) =X ||(σ)e−iωt, the unitary transformation X || =
G1/4Y || combined with the same change of variables yields[

− d2

dσ2
+ V||(σ)

]
Y ||(σ) = +1 · Y ||(σ), (16)

where

V||(σ) =
1
16
G−3[7(∂rG)2 − 4G(∂2rG)]

= − (5r
2/ε2 − 2ε2/r2)

(r2/ε2 + ε2/r2)3
. (17)

By a similar reasoning as the transverse fluctuation case,
for low-energy scattering ε → 0, it is straightforward to
convince oneself that the analog potential approches δ′(σ−
ε), the derivative of the delta function potential. It is well
known that the δ′ potential yields the Neumann boundary
condition [14,15]. An interesting point is that the scatter-
ing center is not at the brane location r = 0 as would
naively be thought from conformal field theory reasoning,
but a distance O(ε) away.
We have thus discovered that the Polchinski’s confor-

mal field theoretic description for boundary conditions of
an open string ending on D-branes follows quite naturally
from dynamical considerations of a string fluctuation in
the low-energy, weak ‘t Hooft coupling, geff → 0, limit.

2.2 Strong coupling limit

Let us now consider the low-energy dynamics of the test
string in the strong coupling regime, geff → ∞. Suppose
N coincident D3-branes are located at |x⊥| ≡ �2sU = 0
and, in this background, a probe D3-brane of charge k
(k � N) is located at x⊥ = x0. We will be considering a
macroscopic fundamental Type IIB string attached to the

2 This is essentially the same argument as the one due to
Callan and Maldacena [11,16]

probe D3-brane, but in the simplifying limit the probe
D3-brane approaches the N coincident D3-branes. In this
case, x0 → 0, and the function G(r) in (2) is reduced to

G = 1 + g2eff

(√
α

′

r

)4
+
k

N

( √
α′

|x⊥ − x0|

)4
→ g̃eff

2

α′
1
U4
, where g̃eff

2 =
(
1 +

k

N

)
g2eff . (18)

The resulting near-horizon geometry is nothing but AdS5
× S5 modulo rescaling of the radius of curvature. Then,
the low-energy effective Lagrangian (10) becomes

L =
T(n,0)

2

∫
dU

[
U2

(
g̃eff

2

U4
(∂tΩ)

2 − (∂UΩ)2
)

+
(
∂tX ||

)2 − U4

g̃eff
2

(
∂UX ||

)2 ]
. (19)

Introducing the tortoise coordinate σ by

∂U

∂σ
=
U2

g̃eff
−→ 1

U
=

σ√
g̃eff
, (20)

and also a dimensionless field variable, Y ||(t, σ),

X ||(t, σ) =
σ

g̃eff
Y ||(t, σ), (21)

one obtains

L =
T(n,0)

2

∫
dσ

[
g̃eff

(
(∂tΩ)

2 − (∂σΩ)2
)

+
1
g̃eff

((
∂tY ||

)2 − (
∂σY ||

)2 − 2
σ2

Y 2
||

)]
. (22)

For monochromatic fluctuations Ω(σ, t) = Ω(σ)e−iωt,
Y ||(σ, t) = Y ||(σ)e−iωt, the field equations are reduced
to one-dimensional Schrödinger equations

− ∂2

∂σ2
Ω = ω2Ω, (23)(

− ∂2

∂σ2
+
2
σ2

)
Y || = ω2Y ||. (24)

One thus finds that the macroscopic Type IIB string hov-
ers around on S5 essentially via a random walk but, on
AdS5, fluctuations are mostly concentrated on the region
α′U2 � g̃eff , viz. the interior of AdS5.

3 Strings on D3-brane: Born–Infeld analysis

Let us now turn to the world-volume description of semi-
infinite strings ending on D3-branes. From Polchinski’s
conformal field theory point of view, which is exact at
λIIB = 0, the end of a fundamental string represents an
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electric charge (likewise, the end of a D-string represents a
magnetic charge). For the semi-infinite string, the electri-
cally charged object has infinite inertia mass, and hence is
identified with a heavy quark Q (or anti-quark Q̄). An im-
portant observation has been advanced recently by Callan
and Maldacena [11] (and independently by Gibbons [12]
and by Howe, Lambert and West [13]): that the semi-
infinite fundamental string can be realized as a deforma-
tion of the D3-brane world-volume. It was also emphasized
by Callan and Maldacena that a full-fledged Born–Infeld
analysis is necessary in order to match the string dynamics
correctly.
In this section, we reanalyze the configuration and low-

energy dynamics of the semi-infinite strings from the view-
point of the deformed world-volume of D3-branes. Our ul-
timate interest being geff → ∞ and zooming into the anti-
de Sitter spacetime, we will proceed our analysis with two
different types of Born–Infeld theory. The first is defined
by the standard Born–Infeld action, which resums (a sub-
set of) infinite order α′ corrections. Since string loop cor-
rections are completely suppressed, results deduced from
this are only applicable far away from the D3-branes. As
such, we will refer to this regime as being described by
classical Born–Infeld theory. The second is the confor-
mally invariant Born–Infeld action [4], which resums pla-
nar diagrams of ‘t Hooft’s large-N expansion in the limit
geff → ∞. With the near-horizon geometry fully taken into
account, results obtained from this are directly relevant to
the anti-de Sitter spacetime. We will refer to this case as
being described by quantum Born–Infeld theory.

3.1 Heavy quark in classical Born–Infeld theory

Classical Born–Infeld theory for D3-branes in flat space-
time is described by

LCBI =
1
λIIB

(25)

×
∫
d3x

√
det(ηab + ∂aX⊥ · ∂bX⊥ + α′Fab).

For a static configuration whose excitation involves only
electric and transverse coordinate fields, the Lagrangian
is reduced to

LCBI → 1
λIIB

∫
d3x

(
(1− E2)(1 + (∇X⊥)2)

+(E · ∇X⊥)2 − Ẋ2⊥
)1/2

. (26)

While the equations of motion for E andX⊥ derived from
(26) are complicated coupled non-linear equations, for a
BPS configuration, the non-linearity simplifies dramati-
cally and reduces to a set of self-dual equations:

∇X⊥ · Ω̂5 = ±E. (27)

Here, Ω̂5 denotes the angular orientation of the semi-
infinite string. The two choices of signs in (27) correspond

to quark and anti-quark and are oriented at anti-podal
points on Ω5. Once the above BPS condition (27) is sat-
isfied, the canonical momentum conjugate to the gauge
field reduces to the electric field E, much as in Maxwell
theory. Moreover, such a solution is a BPS configuration.
This follows from inserting the relation ∇Xi = ±E into
the supersymmetry transformation of the gaugino field (in
ten-dimensional notation):

δχ = ΓMNFMN ε (M,N = 0, 1, · · · , 9)
= E · Γ r

(
Γ 0 + Ω̂5 · Γ

)
ε. (28)

By applying Gauss’ law, a semi-infinite strings represent-
ing a spherically symmetric heavy quark or an anti-quark
of total charge n is easily found3:

X⊥ · Ω̂5 = X⊥0 + λIIB
n

r

(
r = |x|||

)
. (29)

We emphasize again that the BPS condition is satisfied if
all the strings (representing heavy quarks) have the same
value of Ω5 and all the anti-strings (representing heavy
anti-quarks) have the anti-podally opposite value of Ω5.
Now that the heavy quarks and anti-quarks are re-

alized as infinite strings, they can support gapless low-
energy excitations. From the D3-brane point of view, these
excitations are interpreted as internal excitations onR+×
S5. We would like to analyze these low-energy excita-
tions by expanding the classical Born–Infeld action around
a single string configuration. The expansion is tedious
but straightforward. Fluctuations to quadratic order come
from two sources. The first is from a second-order varia-
tion of the transverse coordinates. The second is from the
square of the first-order variation involving both trans-
verse coordinates and gauge fields. Evidently, if the back-
ground involves non-trivial transverse coordinate fields,
this contribution induces mixing between gauge field and
transverse coordinate fluctuations. Denoting the gauge
field fluctuation as Fµν and the scalar field fluctuation par-
allel and perpendicular to the string direction as Y||, Y⊥,
respectively, the low-energy effective Lagrangian is re-
duced to

LCBI =
1

2λIIB

∫
d3x

[
(1 +E2)F20i − F2ij − 2E2F0i · ∂iY||

+Ẏ 2|| − (1− E2)(∂iY||)2

+(1 +E2)Ẏ 2⊥ − (∂iY⊥)2
]
. (30)

In order to compare this result with a supergravity anal-
ysis, it is necessary to integrate out the world-volume
gauge fields. The longitudinal scalar field fluctuation cou-
ples only to the electric field. Since the gauge field fluctu-
ations appear through the field strengths, integrating out
the gauge field is straightforward. For the S-wave modes,
the reduced Lagrangian reads

3 If all the semi-infinite strings emanate from one of the D3-
branes, the center-of-mass factor N should be absent in the
expression
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LCBI =
1

2λIIB

∫
d3x

(
(∂tY||)2 − 1

(1 +E2)
(∂rY||)2

+(1 +E2)(∂tY⊥)2 − (∂rY⊥)2
)
. (31)

The structure of this Lagrangian is quite reminiscent of
the supergravity fluctuation Lagrangian (10) even though
the coordinates involved are quite different. To make a fur-
ther comparison, we first note that the world-volume co-
ordinate x is not the intrinsic coordinate measured along
the D3-brane world-volume. Since we are studying fluctu-
ations on the D-brane, it is quite important to measure
distance using intrinsic D3-brane coordinates. Therefore,
we now make a change of variable r to the tortoise coor-
dinate σ:

dr
dσ̃

=
1√
G̃
; G̃(r) ≡ (1 +E2) =

(
1 +

n2λ2IIB
r4

)
. (32)

After the change of variables, (31) becomes

LCBI =
1

2λIIB

∫
dσ̃r2

[√
G̃

(
(∂tY⊥)2 − (∂σ̃Y⊥)2

)
+
1√
G̃

(
(∂tY||)2 − (∂σ̃Y||)2

) ]
. (33)

Again, the Lagrangian clearly displays the fact that D3-
brane coordinate fluctuations parallel and perpendicular
to the semi-infinite string propagate at the speed of light
even though the string mass density and tension changes
spatially. Moreover, the polarization dependence of the
string mass density and tension can be understood geo-
metrically from the fact that the proper parallel and or-
thogonal directions to the D-brane do not coincide with
the above fixed background decomposition. In fact, this
has been demonstrated explicitly for the case of the open
string ending on a D1-brane [17]. Since essentially the
same analysis is applicable for the D3-brane, we will not
elaborate it further here and move on to the analysis of
the boundary conditions.
For a monochromatic transverse fluctuation Y⊥(σ̃, t) =

Y⊥(σ̃)e−iωt, the unitary transformation Y⊥ → Y⊥/rG1/4
and the change of variables σ̃ → σ̃/ω, r → r/ω, λIIB →
λIIB/ω yields the fluctuation equation of motion in the
form of a one-dimensional Schrödinger equation:[

− d2

dσ̃2
+ Ṽ⊥(σ̃)

]
Y⊥(σ̃) = +1 · Y⊥(σ̃), (34)

where

Ṽ⊥(σ̃) =
5ε̃−2

(σ̃2/ε̃2 + ε̃2/σ̃2)3
(
ε̃ =

√
nλIIBω

)
. (35)

Note that the functional form of this equation is exactly
the same as the one obtained from a supergravity descrip-
tion. Therefore, the fact that the self-adjoint boundary

condition of the Y⊥ fluctuation is of Dirichlet type holds
in the same way.
Repeating the analysis for monochromatic parallel

fluctuations Y||(σ̃, t) = Y||(σ̃)e−iωt, unitary transforma-
tion Y|| → r−1G1/4Y|| and the same change of variables
as above yields the analog one-dimensional Schrödinger
equation: [

− d2

dσ̃2
+ Ṽ||(σ̃)

]
Y||(σ̃) = +1 · Y||(σ̃), (36)

where

Ṽ||(σ̃) =
(6ε̃2/r̃2 − r̃2/ε̃2)
(r̃2/ε̃2 + ε̃2/r̃2)3

. (37)

A comparison to the result (17) shows that, once again,
the functional behavior is essentially the same for the su-
pergravity and the classical Born–Infeld side. As such, for
low-energy and weak string coupling gIIB → 0, both sides
give rise now to Neumann boundary condition, which is
another possible self-adjoint extension of the one-dimen-
sional wave operator. Quite surprisingly, we have repro-
duced Polchinski’s boundary condition for an open string
ending on D3-branes purely from dynamical considera-
tions, both in spacetime (using a supergravity description)
and on the D3-brane world-volume (using the Born–Infeld
description).

3.2 Heavy quark in quantum Born–Infeld theory

In the regime geff → ∞, the D3-brane dynamics is most
accurately described by quantum Born–Infeld theory, in
which ‘t Hooft’s planar diagrams are resummed over. One
immediate question is whether and how the shape and
fluctuation dynamics of a semi-infinite string are affected
by these quantum corrections. To answer this question, we
analyze the semi-infinite string configuration ending on a
D3-brane located in the vicinity of N−1 other D3-branes.
The configuration is depicted in Fig. 1.
The quantum Born–Infeld theory is described by the

Lagrangian

LQBI =
1
λIIB

∫
d3x

1
h

[(
det

(
ηab + h(∂aX⊥ · ∂bX⊥)

+
√
hFab

))1/2
− 1

]
,

h(U) =
g2eff
U4

(
U = |X⊥|/�2s

)
.

The −1 term inside the bracket originates from the Wess–
Zumino term of the D-brane world-volume action and en-
sures that the ground state has zero energy. For a static
world-volume configuration with non-trivial electric and
U -fields, one finds

LQBI =
1
λIIB

∫
d3x

1
h

[( (
1− hE2) (1 + h(∇U)2)

+h2(E · ∇U)2 − hU̇2
)1/2

− 1
]
. (38)
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Fig. 1. Macroscopic string as a BPS soliton on a D3-brane
world-volume. Large-N corrections induced by branes at U = 0
in general give rise to corrections to the shape and low-energy
dynamics of the D3-brane

Denoting the quantity inside the square root as L for no-
tational brevity, the canonical conjugate momenta to the
gauge field and the Higgs field U are given by

λIIBΠA =
1
L

[−E
(
1 + h(∇U)2)+ h∇U(E · ∇U)] ,

λIIBP U = − 1
L
U̇. (39)

We now look for a BPS configuration of the world-volume
deformation, as in the case of the classical Born–Infeld
theory, that can be interpreted as a semi-infinite string
attached to the D3-branes. For a static configuration, the
equations of motions read

∇ ·
[
1
L
(∇U(1− hE2) + h(E · ∇U)E)

]
=
4U3

L
h[(E · ∇U)2 − E2(∇U)2], (40)

∇ ·
[
1
hL
(−E(1 + h(∇U)2) + h∇U(E · ∇U))

]
= 0.

While coupled in a complicated manner, it is remarkable
that the two equations can be solved exactly by the fol-
lowing self-dual BPS equation:

E = ±∇U. (41)

Remarkably, this self-dual equation is exactly of the same
form as the one found for the classical Born–Infeld theory,
(20). In this case, L = 1/h and non-linear terms in each
equations cancel each other. We emphasize that the Wess–
Zumino term −1 in the quantum Born–Infeld Lagrangian,
which was present to ensure a vanishing ground-state en-
ergy, is absolutely crucial to yield the right-hand side of
the first equation of motion, (40). The resulting equation
is nothing but the Gauss law constraint, (40):

∇ · E = ∇2U = 0, (42)

where the Laplacian is expressed in terms of conformally
flat coordinates. A spherically symmetric solution of the
Higgs field U is given by

U = U0 + λIIB
n

r
(r = |x|||). (43)

The interpretation of the solution is exactly the same as
in the classical Born–Infeld theory: the gradient of the
Higgs field U acts as a source of the world-volume electric
field; see (42). From the Type IIB string theory point of
view, the source is nothing but n coincident Type IIB
fundamental strings attached to the D3-branes. As such,
one now has found a consistent world-volume description
of the macroscopic Type IIB string in the ‘t Hooft limit.
The total energy now reads

E =
∫
d3x

(
1
h
[1 + h(∇U)2]− 1

h

)
=

∫
d3x(∇U)2

= nU(r = ε). (44)

Thus, the total energy diverges with the short-distance
cut-off ε as in the weak coupling case. Since the above spike
soliton is a BPS state and has a non-singular tension the
solution remains valid even in the strong coupling regime.

3.3 Quantum Born–Infeld boundary condition

We will now examine the fluctuation of the Born–Infeld
fields in the quantum soliton background. The setup is as
in the previous subsection – theN multiple D3-branes pro-
duce the AdS5 background, and the world-volume dynam-
ics of a single D3-brane in this background is described by
the quantum Born–Infeld theory, (38). Keeping harmonic
terms, the fluctuation Lagrangian becomes

L(2) = − 1
λIIB

∫
d3r

1
2

[
F 2αβ −

(
1 +

g2eff
U4
(∂rU)2

)
F 20α

− (∂0χ)2 +
(
1− g2eff

U4
(∂rU)2

)
(∂αχ)2

+ 2
g2eff
U4
(∂U)2F0α∂αχ+ 12

U2

g2eff
χ2 (45)

+ U2
(

−
(
1 +

g2eff
U4
(∂U)2

)
(∂0θ)2 + (∂αθ)2

)]
,

where χ refers to the radial direction fluctuation, and ψ is
the angular fluctuation corresponding to the coordinates
θ in the Lagrangian (38). With the Higgs field given as
in (43), the above fluctuation Lagrangian is complicated.
Thus, we will consider the special situation for which U0 =
0. In this case, one finds that

g2eff
U4
(∂rU)2 =

g2eff
λ2IIBn

2 . (46)
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This simplifies the fluctuation Lagrangian considerably,
yielding

L(2) = − 1
λIIB

∫
d3r

1
2

[
F 2αβ −

(
1 +

g2eff
q2

)
F 20α

− (∂0χ)2 +
(
1− Q2

q2

)
(∂αχ)2

+ 2
g2eff
λ2IIBn

2F0α∂αχ+ 12
U2

g2eff
χ2

+ U2
(

−
(
1 +

g2eff
λ2IIBn

2

)
(∂0θ)2 + (∂αθ)2

)]
.

One readily finds that the electric field and the radial
Higgs field fluctuations are related to each other by(

1 +
g2eff
λIIBn2

)
F0α =

g2eff
λIIBn2

∂αχ.

Now, integrating out the electric field fluctuation, we find
that

L(2) = − 1
λIIB

Ω2

∫
drr2

1
2

[
F 2αβ − (∂0χ)2

+
1

1 + g2eff/λIIBn2
(∂αχ)2 + 12

λIIBn
2

g2eff

1
r2
χ2

− λ2IIBn
2

r2

(
−

(
1 +

g2eff
λ2IIBn

2

)
(∂0θ)2 + (∂αθ)2

)]
,

(Ω2 ≡ Vol(S2)).

We see that a fluctuation of the magnetic field is non-
interacting, and hence we focus on the Higgs field fluctu-
ations only. Make the following change of the radial coor-
dinate and Higgs field4:

r =
1√

1 +
g2eff
λ2IIBn

2

r̃ and χ = λIIB
n

r
χ̃ = Uχ̃. (47)

The fluctuation Lagrangian then becomes

L(2) =
1
λIIB

Ω2

∫
dr̃
1
2
q2

1√
1 + g2eff/λIIBn2

×
[
(∂0χ̃)2 − (∂r̃χ̃)2 − 12

(
λ2IIBn

2

g2eff
+ 1

)
χ̃2

r̃2

]
+

1
λIIB

Ω2

∫
dr̃
1
2
λ2IIBn

2
√
1 + g2eff/λ

2
IIBn

2

× [
(∂0θ)2 − (∂r̃θ)2

]
.

The overall λ2IIBn
2 factor is actually irrelevant, as it can be

eliminated by redefining the θ and χ̃ fields appropriately.

4 The change of variable for the χ field renders χ̃ dimension-
less

With an appropriate change of variables as in the super-
gravity case, we finally obtain the fluctuation equations of
motion: [

−∂
2

∂2r̃
− ω2

]
θ = 0,[

−∂
2

∂2r̃
+ 12

U2

g2eff
− ω2

]
χ̃ = 0.

Remarkably, while that was not transparent in the inter-
mediate steps, the Higgs field fluctuations turn out to be
independent of the λIIBn parameter. This implies that the
fluctuations exhibit a universal dynamics, independent of
the magnitude of the “quark” charge. The fluctuations
comprise essentially the Goldstone modes on S5 and a har-
monically confined radial Higgs field fluctuation localized
near u = 0. The implications of these characteristics of the
fluctuations to the super Yang–Mills theory are discussed
elsewhere [20].

3.4 Geometric UV–IR duality

It is remarkable that for both the supergravity and the
Born–Infeld theory viewpoints, the fluctuation dynamics
is identical given the fact that the σ tortoise coordinate in
the supergravity description measures the distance along
the α′U direction – a direction perpendicular to the D3-
brane, while the σ̃ tortoise coordinate in the classical
Born-infeld description measures the distance parallel to
the D3-brane, the Yang–Mills distance. The supergravity
and the classical Born–Infeld theory provides a dual de-
scription of the semi-infinite string as a heavy quark. The
reason behind this is that, as α′ corrections are taken into
account, the D3-brane is pulled by the semi-infinite string
and continues deforming until a tensional force balance is
achieved. Now that the D3-brane sweeps out in the α′U
direction once stretched by charge probes, a balance of
tensional force is in order:

1
R||

↔ α′U, (48)

where R|| = |x|||. In particular, the short (long) distance
in directions parallel to the D3-brane is related to the
long (short) distance in a direction perpendicular to the
D3-brane.
We will refer to the “reciprocity relation” (48) as “ge-

ometric UV–IR duality” and will derive in later sections
the precise functional form of the relation from the con-
sideration of the quark–anti-quark static energy.

4 String–anti-string pair
and heavy quark potential

So far, in the previous sections, we have studied the BPS
dynamics involving a single probe string. In this section,
we extend the study to the non-BPS configuration. We
do this again from the Born–Infeld super-Yang–Mills and
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Fig. 2. Non-BPS configuration of a string–anti-string pair as a
realization of a heavy quark–anti-quark pair. String corrections
smooth out curvature at the two sharp corners

anti-de Sitter supergravity points of view. Among the myr-
iads of non-BPS configurations, the simplest and physi-
cally interesting one is a pair of oppositely oriented, semi-
infinite strings attached to the D3-brane.
Physically, the above configuration may be engineered

as follows. We first prepare a macroscopically large, U-
shaped fundamental string, whose tip part is parallel to
the D3-brane but the two semi-infinite sides are oriented
radially outward; see Fig. 2. As we move this string to-
ward the D3-brane, the tip part will be attracted to the
D3-brane and try to form a non-threshold bound-state.
The configuration is still not a stable BPS configuration
since the two end points from which the semi-infinite sides
emanate acts as a pair of opposite charges since their
Ω5 orientation is the same. They are nothing but heavy
quark–anti-quark pairs. Thus, the two ends will attract
each other (since the bound-state energy on the D3-brane
is lowered by doing so) and eventually annihilate into ra-
diations. However, in so far as the string is semi-infinite,
the configuration will be energetically stable: the inertia
of the two open strings is infinite. Stated differently, as the
string length represents the vacuum expectation value of
the Higgs field, the quark–anti-quark pairs are infinitely
heavy. In this way, we have engineered a static configura-
tion of a (QQ) pair on the D3-brane.
The (QQ) configuration is of some interest since it may

tell us whether the d = 4,N = 4 super-Yang–Mills theory
exhibits confinement. The theory has a vanishing β func-
tion, and hence no dimensionally transmuted mass gap ei-
ther. Therefore, one might be skeptical to the generation
of a physical scale from a gedanken experiment using the
above configuration. The result we will get is not in contra-
diction, however, as the scale interpreted as a sort of “con-
finement” scale is really residing in the AdS5 spacetime.
It is a direct consequence of spontaneously broken confor-
mal invariance of the super-Yang–Mills theory. Therefore,
the “confinement” behavior in the AdS5 spacetime ought
to be viewed as “Coulomb” behavior in super-Yang–Mills
theory. Once again, the interpretation relies on the earlier

observation that parallel and perpendicular directions to
the D3-brane are geometrically dual to each other.

4.1 Quark–anti-quark pair:
String in anti-de Sitter space

We first construct the aforementioned string configuration
corresponding to QQ pair on the D3-brane from anti-de
Sitter supergravity. To find the configuration we find it
most convenient to study portions of the string separately.
Each of the two semi-infinite portions is exactly the same
as a single semi-infinite string studied in the previous sec-
tion. Thus, we concentrate mainly on the tip portion that
is about to bound to the D3-brane. The portion cannot
be bound entirely parallel to the D3-brane since it will
cause a large bending energy near the location we may as-
sociate with Q and Q. The minimum energy configuration
would be literally like an U-shape. We now show that this
is indeed what happens.
We now repeat the analysis of a test string in a super-

gravity background of N D3-branes. For a static configu-
ration, the Nambu–Goto Lagrangian is exactly the same
as (7):

LNG →
∫
dσ

√
X ′

⊥
2 +

1
G

X ′
||
2
. (49)

From the equations of motion, we find that the other pos-
sible solution is when the string is oriented parallel to the
D3-brane. This yields precisely the static gauge configu-
ration

X0 = t = τ, X || = σn̂. (50)

Then, the two equations of motion (8) become X ′
⊥√

X ′
⊥
2 +G−1

′

= (∇x⊥G
−1),

 G−1√
X ′

⊥
2 +G−1

′

= 0. (51)

We now consider the non-BPS QQ configuration studied
earlier. Since the two semi-infinite strings are oriented par-
allel on Ω5 we only consider an excitation of the α′U co-
ordinate. From the equation of motion, the first of (51),

− 1
G
U ′′ +

1
2

(
∂U
1
G

)(
2U ′2 +

1
G

)
= 0, (52)

one can obtain the first integral of motion:

G2U ′2 +G =
g2eff
U4∗
, (53)

where we have chosen a convenient parameterization of
the integration constant. This is in fact the same as the
other conserved integral, the second of (51) and shows that
the equations are self-consistent.
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Denoting Z ≡ U∗/U , the solution to (53) can be found
in an implicit functional form:

(x|| − d/2) = ±geff
U∗

[√
2E

(
arccosZ,

1√
2

)
− 1√

2
F

(
arccosZ, 1/

√
2
)]
. (54)

Here, F (φ, k), E(φ, k) denote the elliptic integrals of the
first and second kinds. It is easy to visualize that the solu-
tion describes a monotonic lifting of the U direction fluctu-
ation (thus away from the D3-brane plane) and diverges
at finite distance along x||. For our choice, they are at
x|| = 0 and d. This prompts us to interpret the integration
constant d in (54) as the separation between quark and
anti-quark, measured in x|| coordinates. The string is bent
(roughly in U-shape) symmetrically about x|| = d/2. As
such, the inter-quark distance measured along the string
is not exactly the same as d. The proper distance along
the string is measured by the U coordinate. The relation
between the coordinate separation and proper separation
is obtained easily by integrating over the above (49). It
yields

d

2
=
geff
U∗

[√
2E

(
π

2
,
1√
2

)
− 1√

2
F

(
π

2
,
1√
2

)]
(55)

=
geff
U∗
C1

(
C1 =

√
πΓ (3/4)/Γ (1/4) = 0.59907...

)
.

This formula implies that the integration constant U∗
would be interpreted as the height of the U-shaped tip
along the U coordinate. Up to numerical factors, the rela-
tion again exhibits the “geometric duality” (32) between
the Yang–Mills coordinate distance d and the proper dis-
tance U∗.
Using the first integral of motion, the inter-quark po-

tential is obtained straightforwardly from the Born–Infeld
Lagrangian. The proper length of the string is infinite, so
we would expect a linearly divergent (in the U coordinate)
energy. Thus, we first calculate the regularized expression
of the energy by excising out a small neighborhood around
x|| = 0, d:

VQQ(d) = limε→0n

[√
G∗

∫ d/2−ε

0
dx||G−1

]
(56)

= limU→∞n

[
2U∗

∫ U

1
dt

t2√
t4 − 1

]

= 2nU∗

[
U +

1√
2
K(1/

√
2)−

√
2E(1/

√
2) +O(U−3)

]
.

The last expression clearly exhibits the infinite energy
originating from the semi-infinite strings and indeed it is
proportional to the proper length 2U . After subtracting
(or renormalizing) the string self-energy, the remaining,
finite part may now be interpreted as the inter-quark po-
tential. An amusing fact is that it is proportional to the
inter-quark distance when measured in the U coordinate.

One might be tempted to interpret the inter-quark po-
tential as being in fact a Coulomb potential by using the
relation (51). However, it does not have the expected de-
pendence on the electric charges: instead of a quadratic
dependence, it only grows linearly. Because of this, we
suspect that the interpretation of the static QQ poten-
tial is more natural when viewed as a linearly confining
potential in the U direction in AdS5.
The static inter-quark potential shows several pecu-

liarities. First, the potential is purely Coulombic, viz. in-
versely proportional to the separation distance. This, how-
ever, is due to the underlying conformal invariance. In-
deed, at the critical point of the second-order phase transi-
tion (where conformal invariance is present), it was known
that the Coulomb potential is the only possible behav-
ior [21]. Second, most significantly, the static quark po-
tential strength is non-analytic in the effective ‘t Hooft
coupling constant, g2eff . The quark potential is an exper-
imentally verifiable physical quantity, and, in the weak
‘t Hooft coupling domain, it is well known that physical
quantities ought to be analytic in g2eff , at least, within a
finite radius of convergence around the origin. Moreover,
for d = 4, N = 4 super-Yang–Mills theory, we do not
expect a phase transition as the ‘t Hooft coupling param-
eter is varied. Taking the aforementioned non-analyticity
of the square-root branch cut type as a prediction for the
strongly coupled super-Yang–Mills theory, we conjecture
that there ought to be two distinct strong coupling sys-
tems connected smoothly to one and the same weakly cou-
pled super-Yang–Mills theory. To what extent these two
distinct systems are encoded into a single AdS5 supergrav-
ity is unclear, and hence poses an outstanding issue to be
resolved in the future.

4.2 Heavy quark–anti-quark pair:
Quantum Born–Infeld analysis

Let us begin with a quantum Born–Infeld analysis of the
heavy quark–anti-quark pair. In earlier sections, we have
elaborated that quarks and anti-quarks correspond to
semi-infinite strings of opposite Ω5 orientation angle. That
this is a BPS configuration can be understood in several
different ways. Consider a string piercing the D3-brane
radially. The simplest is from the gaugino supersymmetry
transformation, (28). Residual supersymmetry is consis-
tent among individual semi-infinite strings if and only if
their Ω5 angular orientations are all the same for the same
charges and anti-podally opposite for opposite charges.
Alternatively, at the intersection locus, one can split the
string and slide the two ends in opposite directions. This
does not cost any energy since the attractive electric force
is balanced by a repulsive α′U gradient force. This BPS
splitting naturally gives rise to a quark–anti-quark con-
figuration in which semi-infinite strings are anti-podally
opposite on Ω5.
The fact that QQ does not exert any force in this case

is not a contradiction at all. The Coulomb force between Q
andQ is cancelled by a gradient force of the α′U field. This
already indicates that we have to be careful in interpreting
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a b

Fig. 3a,b. Heavy (QQ) realization via deformation of the D3-
brane world-volume. A highly non-BPS configuration a corre-
sponds to two throats located at the same point on Ω5. For
the BPS configuration b, two throats are at anti-podal points
on Ω5. By continuous rotation on Ω5, b can be turned into a
and vice versa

the evolution of QQ on the D3-brane as a timelike Wilson
loop of the four-dimensional gauge fields only. The more
relevant quantity is the full ten-dimensional Wilson loop:

W [C] = exp[i
∮
(Aαdxα + Ẋ⊥ · dx⊥)]. (57)

From the BPS point of view, it simply states that, for
example, in evaluating a static potential between heavy
quark and anti-quark, one has to include all long-range
fields that will produce the potential.
A little thought concerning the BPS condition (41) in-

dicates that there is yet another configuration that may be
interpreted as a static QQ state. If we take a semi-infinite
string representing a quark with the positive sign choice in
(37) and superimpose another semi-infinite string repre-
senting an anti-quark with the negative sign choice, then
we obtain a QQ configuration in which the Ω5 angular po-
sitions are the same. In this case, it is easy to convince one-
self that both the Coulomb force and the U -field gradient
force are attractive, and hence produce a non-trivial QQ
static potential. Indeed, starting from the BPS QQ con-
figuration with opposite Ω5 orientations mentioned just
above, one can deform it into the present non-BPS QQ
configuration by rotating one of the semi-infinite string
on Ω5 relative to the other; see Fig. 3 for illustration. It
should also be clear that it is the gradient force of scalar
fields in the transverse directions that changes continu-
ously as the relative Ω5 angle is varied.
While an explicit solution describing the QQ config-

uration might be possible, we were not able to find the
solution in any closed form starting from the quantum
Born–Infeld action. Therefore, in this section, we will cal-
culate the static potential for the non-BPS QQ configu-
ration with an asymptotic approximation. Namely, if the
separation between the semi-infinite string representing
a quark and another representing an anti-quark is wide
enough, the field configuration may be approximated to a
good degree by a linear superposition of two pairs of single

string BPS solutions with opposite sign choice in (43). For
the α′U field, the approximate configuration is given by

U(r) := U0 + nλIIB

(
1

|r + d/2| +
1

|r − d/2|
)
, (58)

while the electric field is a linear superposition of differ-
ences of the gradients of each term in (58). Note that the
inflection point of the α′U field is around the midpoint
r = 0 between Q and Q. If we denote the lift of the U -field
at this point as U∗, measured relative to the asymptotic
one U0, it is given by

U∗ ≈ 4n
|d| . (59)

Interestingly, a short-distance limit (i.e. an inter-quark
separation |d| → 0) in the gauge theory corresponds to
a long-distance limit (U∗ → ∞) in anti-de Sitter super-
gravity and vice versa.
Let us now estimate the static QQ potential. If we

insert the linear superposition of solutions to the energy
functional, (40), there are self-energy contributions of the
form precisely as in the last line in (40). Subtracting (or
rather renormalizing) these self-energies, we are left with
the interaction energy

V (d) ∼ 2n2
∫
d3x

1
|r + d/2|2

1
|r − d/2|2

×(r̂ + d̂/2) · (r̂ − d̂/2). (60)

The integral is finite and, by dimensional analysis, is equal
to

VQQ(d) ∼ 2n2CBI|d| , (61)

where the coefficient C2 depends on gst andN . The dimen-
sionless numerical coefficient CBI, which depends critically
on λIIB andN through the relation (43), can be calculated,
for example, by the Feynman parameterization method.
The interaction potential is indeed a Coulomb potential –
inversely proportional to the separation and proportional
to the charge-squared. Utilizing the “geometric duality”
relation (59), it is also possible to re-express the static
potential by

VQQ(U∗) ∼ 1
2
nU∗CBI. (62)

Recall that U∗ was a characteristic measure of the α′U
field lift relative to the asymptotic value U0 (See Fig. 3).
Since this is caused by bringing in Q and Q of the same
orientation, the interpretation would be that the static
QQ potential is produced by a U∗ portion of the string
due to the presence of a neighbor non-BPS string. In some
sense, the QQ pair experiences a confining force in the α′U
direction. The fact that (62) is proportional linearly to the
charge n is another hint to this “dual” interpretation. The
result (62), however, does not expose the aforementioned
non-analyticity of the square-root branch cut type in the
previous subsection. We interpret this provisionally as the
assertion that the Born–Infeld theory is insufficient for a
full-fledged description of the strong coupling dynamics.
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L

θ

d

U*

x

Fig. 4. Non-BPS configuration of quark–anti-quark pair on a
D-string

Now that we have found two distinct QQ configura-
tions, we can estimate the QQ static potential purely due
to the Coulomb interaction. Recall that, for the BPS QQ
configuration, the Coulomb interaction energy was can-
celled by the α′U field gradient energy. On the other hand,
for the non-BPS QQ configuration, the two add up. Thus,
by taking an average of the two, we estimate that the
purely Coulomb potential between the static QQ equals
half of (61) or, equivalently, of (62).

4.3 Heavy quark potential in one dimension

In the previous subsection, we have estimated the QQ
static potential only approximately by linearly superim-
posing two opposite sign BPS string configurations. To as-
certain that this is a reasonable approximation, we study a
simpler but exactly soluble example of the QQ potential: a
pair of oppositely oriented fundamental strings hung over
two parallel, widely separated D-strings.
Consider, as depicted in Fig. 4, a pair of D-strings of

length L along the x-directon, whose ends are at fixed
position. The two fundamental strings of opposite orien-
tation are connected to the two D-strings and are sepa-
rated by a distance d in the x direction. At λIIB → 0, the
fundamental strings obey the Polchinski string boundary
conditions and are freely sliding on the D-string.
Once λst is turned on, the string network gets deformed

into a new equilibrium configuration. It is intuitively clear
what will happen: the two fundamental strings will attract
the two D-strings. In doing so, the length of the funda-
mental strings is shortened. Since the two funadamental
strings are oppositely oriented, they will attract each other
and eventually annihilate. In the weak coupling regime,
however, the force is weak compared to the inertial mass
of the fundamental string. We shall calculate the potential
between them in this weak coupling regime.
This energy difference is given by

VQQ(d) = d

[√
1
λ2IIB

+ n2 − 1
λIIB

]

≈ d
[
1
2
n2λIIB

]
. (63)

This indeed represents the static (QQ) potential. As ex-
pected for the Coulomb interaction, the energy is propor-
tional to the quark’s charge-squared n2. It is also propor-
tional to the string coupling λst, which is also proportional
to g2YM.
The potential can be interpreted differently. The four

portions of D-strings between each string junctions and
the fixed ends are now all bent by the same angle θ rela-
tive to the x-axis. From the requirement of tensional force
balance at each string triple junction one finds easily that

tan θ = nλIIB. (64)

Then, a simple geometric consideration leads to the rela-
tion that the shortening of the fundamental string denoted
by U∗ is given by

2U∗ = (L− d) tan θ. (65)

Using these relations for (63) we now find that

VQQ(U∗) = nU∗ (66)

plus an irrelevant bulk contribution. In this alternative
form, it is clear that the static potential energy originates
from the deformation of the string network, which in turn
reduces the length of the fundamental strings.
Note that in deriving the above results, we have lin-

early superposed two triple string junctions, each satis-
fying BPS conditions E = ±∇xU respectively. The lin-
early superposed configuration then breaks the supersym-
metries completely. Nevertheless, at weak coupling and for
macroscopically large size, we were able to treat the whole
problem quasi-statically, thanks to the (almost) infinite
inertial mass of the fundamental strings. Thus, approxi-
mations and results are exactly the same as for (QQ) on
D3-branes.

4.4 θ-dependence of inter-quark potential

The d = 4, N = 4 super-Yang–Mills theory contains two
coupling parameters g2YM and θ, the latter being a co-
efficient of Tr(εµναβFµνFαβ)/32π2. From the underlying
Type IIB string theory, they arise from the string coupling
parameter λst and Ramond–Ramond zero-form potential
C0. They combine into a holomorphic coupling parameter

τ =
θ

2π
+ i

4π
g2YMN

= C0 + i
1
λIIB

. (67)

From the gauge theory point of view, one of the inter-
esting questions is the θ-dependence of the static quark
potential. Under d = 4 P and CP , the former is odd while
the latter is even. Thus, the static quark potential should
be an even function of θ. The θ range is (0, 2π). Then, the
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periodicity of θ (i.e. the T -transformation of SL(2,Z) and
invariance of the static quark potential under the parity
transformation immediately dictate that the quark poten-
tial should be symmetric under θ → −θ and π−θ → π+θ.
This yields a cuspy form for the potential. Since the whole
physics descends from the SL(2,Z) S-duality, let us make
a little calculation in a closely related system: the triple
junction network of (p, q) strings. This system will exhibit
most clearly the very fact that string tension is reduced
most at θ = π. That this is so can be seen from replacing
n in the previous analysis by a θ-angle rotated dyon case:

n →
√
(n− θm)2 + m2

λ2IIB
. (68)

The whole underlying physics can be understood much
clearer from the D-string junctions. Consider a (0, 1) D-
string in the background of a Ramond–Ramond zero-form
potential. The Born–Infeld Lagrangian reads

LD1 =
T

λIIB

∫
dx

√
1 + (∇X)2 − F 2 + C0 ∧ F. (69)

Consider a (1, 0) fundamental string attached to a D-
string at the location x = 0. The static configuration of the
triple string junction is then found by solving the equation
of motion. In the A1 = 0 gauge,

∇
(

−∇A0√
1 + (∇X9)2 − (∇A0)2

− λIIBC0
)
= λIIBδ(x).

(70)
The solution is X9 = a1/2A0 for the continuous parameter
a, where

∇A0√
1− (1− a)(∇A0)2

= λstθ(x1)− λIIBC0. (71)

Substituting the solution to the Born–Infeld Lagrangian,
we find the string tension of the D-string:

TD =


√

1
λ2IIB

+ (1− C0), x1 > 0,√
1
λ2IIB

+ C20 , x1 < 0.

Clearly, the tension of the (1, 1) string (on which the elec-
tric field is turned on) attains the minimum when C0 =
1/2, viz. θ = π. Moreover, in this case, the D-string bends
symmetrically around the junction point x1 = 0, reflect-
ing the fact that P and CP symmetries are restored at
θ = π.

5 Further considerations

In this section, we take up further the present results and
speculate on two issues that might be worthy of further
study.

a b

Fig. 5a,b. Conformal transformation causes local recoil of a
timelike loop. Back tracking at large N is equivalent to a pair
creation process

5.1 Dynamical realization of large-N loop equation

It is well known that the Wilson loop

W [X] = exp
∮

C

dsẊMAM (X(s)) (72)

satisfies the classical identity∫ ε

0
dσ

δ2

δXM (+ε)δXM (ε)
W [X]

= ∇MFMN (X(0))ẊN (0)W [X]. (73)

Physically, this equation can be interpreted as a varia-
tion of the Wilson loop as the area enclosed is slightly
deformed.
More recently, based on a dual description of large-N

gauge theory in 1 + 1 dimensions in terms of near-critical
electric field on a D-string, Verlinde [24] has shown that
the Wilson loop equation follows as the conformal Ward
identity on the string world-sheet. An immediate question
that arises is: relying on the SO(4, 2) conformal invariance
of large-N super-Yang–Mills gauge theory, can one extend
Verlinde’s result and derive the large-N loop equation? In
what follows, we would like to present rather heuristic
arguments why and how conformal invariance might play
some role in this direction.
Classically the large-N loop equation asserts invari-

ance of the Wilson loop average under a small variation
of the area enclosed by the loop. Let us now restrict our-
selves to timelike Wilson loops and apply a small defor-
mation of the contour C. As the contour C of the timelike
Wilson loop represents a straight world-line of a heavy
quark–anti-quark pair, the adiabatic local deformation of
the Wilson loop may be interpreted as a result of the accel-
eration of an initially static quarkQ and subsequent decel-
eration back to the original static quark world-line during
a small time interval. This is depicted in Fig. 5a. Nor-
mally, such acceleration and deceleration requires turning
on and off some adiabatic electric field in the region near
the quark Q trajectory (the shaded region of Fig. 5a).
However, for conformally invariant Yang–Mills theory,

there is an amusing possibility that the accelerating (de-
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celerating) charge configuration can be achieved via con-
formal transformation without a background electric field.
Recall that, in Lorentz invariant theory, it is always pos-
sible that a static configuration can be brought into a
uniformly boosted configuration by the application of a
Lorentz transformation. What conformally invariant the-
ory does is more than that; it can even relate, for ex-
ample, a uniformly accelerated (decelerated) configura-
tion by a conformal transformation to a static (or uni-
formly boosted) configuration. Indeed, if we apply a spe-
cial SO(4, 2) conformal transformation of an inversion
with a translation by aµ followed by another inversion,
we have

xµ → xµ′
=

xµ + aµx2

1 + 2a · x+ a2x2 . (74)

If we set aµ = (0,−(1/2)a), we obtain

t′ =
t

1− z · x+
1
4
a2(x2 − t2)

,

x′ =
x+

1
2
z(t2 − x2)

1− a · x+
1
4
z2(x2 − t2)

. (75)

Thus, the original trajectory of the static configuration at
x = 0 is now transformed into

t∗ =
t

1− 1
4
a2t2

, x∗ =

1
2
at2

1− 1
4
a2t2

, (76)

which, for |t| < 2/|a|, represents the coordinates of a con-
figuration with constant acceleration a passing through
the origin x∗ = 0 at t∗ = 0.
Thus, if one performs instantaneous special conformal

transformations on a finite interval along the heavy quark
Q trajectory, then it would indeed be possible to show
that a timelike Wilson loop is equivalent to a deformed
Wilson loop (by the conformal transformation, however,
only timelike deformations can be realized). Since the anti-
podally oriented QQ pair is a BPS state, it might even be
possible to generate a four-quark (of which two are virtual
BPS states) intermediate state by a variant of the confor-
mation transformation, as depicted in Fig. 5b. Details of
this issue will be reported elsewhere [23].

5.2 Multi-prong strings

Moving a step further, can we manufacture a static con-
figuration that may be an analog of the baryon in QCD
out of Type IIB strings? For the gauge group SU(N), the
baryon is a gauge singlet configuration obeying N -ality.
Clearly, we need to look for a string configuration that can
be interpreted as a N -quark state on the D3-brane world-
volume. Recently, utilizing a triple BPS string junction
[17,25], such a configuration has been identified [26]: an
N -pronged string junction interconnecting N D3-branes.

Fig. 6. Macroscopic string as a BPS soliton on the D3-brane
world-volume. Large-N corrections induced by branes at U = 0
in general give rise to corrections to the shape and low-energy
dynamics of the D3-brane

For example, for the gauge group SU(3) realized by three
D3-branes, the multi-monopole configuration that may be
interpreted as the static baryon is a triple string junction
as depicted in Fig. 6. The N -pronged string junction is
a natural generalization of this, as can be checked from
counting of the multi-monopole states and comparison
with the (p, q) charges of the Type IIB string theory.
The N -pronged string junction also exhibits the dy-

namics of marginal stability as we move around the D3-
branes to which all prongs are attached [26]. Adapted to
the present context, for example, in the situation in Fig. 6,
this implies that as the triple junction point is moved
around by moving the position of the two outward D3-
branes as well as their Ω5 angular coordinates, the triple
string junction will decay once the inner prong becomes
shorter below the curve of marginal stability. The final
configuration is easily seen to be a pair of macroscopic
strings, each one connecting to the two outer D3-branes
separately.

5.3 Quarks and (QQ) at finite-temperature

So far, our focus has been, via the AdS–CFT correspon-
dence, the holographic description of strongly coupled
N = 4 super-Yang–Mills theory at zero temperature. The
AdS–CFT correspondence, however, is not only for the
super-Yang–Mills theory at zero temperature, but also is
extendible for the theory at finite temperature. Is it then
possible to understand the finite-temperature physics of
quark dynamics and static quark potential, again, from
the AdS–CFT correspondence? We will relegate the de-
tailed analysis to a separate work [20], and, in this sub-
section, summarize what is known from the super-Yang–
Mills theory side and propose the set-up for a holographic
description.
At a finite critical temperature T = Tc, pure SU(N)

gauge theory exhibits a deconfinement phase transition.
The relevant order parameter is the Wilson–Polyakov
loop:
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P (x) =
1
N
TrP exp

(
i
∫ 1

T

0
A0(x)dt

)
. (77)

Below the critical temperature T < Tc, 〈P 〉 = 0, and QCD
confines. Above T > Tc, 〈P 〉 is non-zero and takes values
in ZN , the center group of SU(N). Likewise, the two-point
correlation of parallel Wilson–Polyakov loops,

Γ (d, T ) ≡ 〈P †(0)P (d)〉T

= e−F(d,T )/T ≈ e−VQQ(d,T )/T , (78)

measures the static potential at finite temperature be-
tween quark and anti-quark separated by a distance d.
At sufficiently high temperature, thermal excitations

produce a plasma of quarks and gluons and give rise to a
Debye mass mE ≈ geffT (which is responsible for screen-
ing color electric flux) and magnetic mass mM ≈ g2effT
(which corresponds to the glueball mass gap in the confin-
ing three-dimensional pure gauge theory). Their effects are
captured by the asymptotic behavior of the heavy quark
potential:

VQQ(d, T ) ≈ −CE 1
|d|2 e

−2mE|d| + · · · CE = O(g4YM),
−CM 1

|d|e
−mM|d| + · · · CM = O(g12YM).

(79)

It is known that at finite temperature the large-N and
strong coupling limit of d = 4, N = 4 supersymmetric
gauge theory is dual to the near-horizon geometry of near-
extremal D3-branes in Type IIB string theory. The latter
is given by a Schwarzschild–anti-de Sitter Type IIB super-
gravity compactification:

ds2 = α′
[
1√
G

(
−Hdt2 + dx2||

)
+

√
G

(
1
H
dU2 + U2dΩ2

5

)]
, (80)

where

G ≡ g2eff
U4
,

H ≡ 1− U40
U4

(
U40 =

27π4

3
g4eff

µ

N2

)
. (81)

The parameter µ is interpreted as the free energy den-
sity on the near-extremal D3-brane; hence, µ = (4π2/
45)N2T 4. In the field theory limit α′ → 0, µ remains fi-
nite. In turn, the proper energy Esugra = (geff/α′)1/2µ/U
and the dual description in terms of modes propagating
in the above supergravity background is expected to be a
good approximation.
Hence, the question is whether the Debye screening

of the static quark potential (79), or any strong coupling
modification thereof, can be understood from the holo-
graphic description in the background (80). In [20], we
were able to reproduce a result qualitatively in agree-
ment with (79). The strong coupling effect again shows

up through the non-analytic dependence of the potential
to the ‘t Hooft coupling parameter, exactly the same as
for the zero-temperature static potential. In [28], we have
also found a result indicating that the finite-temperature
free energy ofN = 4 super-Yang–Mills theory interpolates
smoothly with the ‘t Hooft coupling parameter, barring a
possible phase transition between the weak coupling and
the strong coupling regimes.

6 Discussion

In this paper, we have explored some aspects of the pro-
posed relation between d = 4, N = 4 supersymmetric
gauge theory and maximal supergravity on AdS5×S5 us-
ing the Type IIB (p, q) strings as probes. From the point
of view of D3-brane and gauge theory, semi-infinite strings
attached to it are a natural realization of quarks and anti-
quarks. Whether a given configuration involving quarks
and anti-quarks is a BPS configuration depends on the
relative orientation among the strings (parameterized by
angular coordinates on S5). The physics we have explored,
however, did not rely much on it, since the quarks and
anti-quarks have an infinite inertia mass and are nomi-
nally stable.
The results we have obtained may be summarized as

follows. For a single quark Q (or anti-quark Q) BPS con-
figuration, near-extremal excitation corresponds to fluctu-
ation of the fundamental string. We have found that the
governing equations and boundary conditions do match
precisely the large-N gauge theory and the anti-de Sit-
ter supergravity sides. In due course, we have clarified
the emergence of Polchinski’s D-brane boundary condition
(Dirichlet for perpendicular and Neumann for parallel di-
rections) as the limit λIIB → 0 is taken. For a non-BPS
QQ pair configuration, we first have studied the inter-
quark potential and again have found agreement between
the gauge theory and the anti-de Sitter supergravity re-
sults. Measured in units of the Higgs expectation value,
the potential exhibits a linear potential that allows the in-
terpretation of confinement to be made. Because the the-
ory has no mass gap generated by dimensional transmuta-
tion, the fact that the string tension is measured in units of
the Higgs expectation value may not be so surprising. We
have also explored the θ-dependence of the static quark
potential by turning on a constant Ramond–Ramond zero-
form potential. The SL(2,Z) S-duality of the underlying
Type IIB string theory implies immediately that the static
quark potential exhibits a cusp behavior at θ = π. The
potential strength is the weakest at this point and hints
at a possible realization of the deconfinement transition
at θ = π. We also discussed qualitatively two related is-
sues. Via conformal invariance we have pointed out that
a static quark configuration can be transformed into an
accelerating (or decelerating) configuration. Viewing this
as a physical realization of deforming the Wilson loop, we
have conjectured that it is this conformal invariance that
allows one to prove the large-N Wilson loop equation for
a conformally invariant super-Yang–Mills theory. We also
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argued that the analogs of static baryons (Q · · ·Q) in QCD
are represented by multi-prong string junctions.
We think that the results in the present paper may be

of some help eventually in understanding dynamical issues
in the large-N limit of superconformal gauge theories. For
one thing, it would be very interesting to understand the
dynamical light or massless quarks and physical excitation
spectra. While we have indicated that a qualitative picture
of the excitation spectrum as conjectured by Maldacena
would follow from a near-extremal excitation of the funda-
mental strings themselves, a definitive answer awaits for
a full-fledged study.

Acknowledgements. SJR thanks D. Bak, C.G. Callan, I. Kle-
banov, J.M. Maldacena and H. Verlinde and other participants
of the Duality ’98 Program at the Institute for Theoretical
Physics at Santa Barbara for useful discussions. SJR is grate-
ful to the organizers M.R. Douglas, W. Lerche and H. Ooguri
for warm hospitality.

References

1. G. ‘t Hooft, Nucl. Phys. B 72, 461 (1974); in Progress
in Gauge Field Theory, NATO Advanced Study Institute,
edited by G. ‘t Hooft et al., pp. 271–335 (Plenum, New
York 1984)

2. M.R. Douglas, J. Polchinski, A. Strominger, J. High-
Energy Phys. 9712, 003 (1997), hep-th/9703031

3. I.R. Klebanov, Nucl. Phys. B 496, 231 (1997); S.S. Gubser,
I.R. Klebanov, A. Tseytlin, Nucl. Phys. B 499, 217 (1997);
S.S. Gubser, I.R. Klebanov, Phys. Lett. B 413, 41 (1997)

4. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998),
hep-th/9711200

5. N. Itzhaki, J.M. Maldacena, J. Sonnenschein, S.
Yankielowicz, Phys. Rev. D 58, 046004 (1998), hep-
th/9802042

6. S.S. Gubser, I.R. Klebanov, A.M. Polykaov, Phys. Lett. B
428, 105 (1998), hep-th/9802109

7. G.T. Horowitz, H. Ooguri, Phys. Rev. Lett. 80, 4116
(1998), hep-th/9802116

8. S. Ferrara, C. Fronsdal, Phys. Lett. B 433, 19 (1998), hep-
th/9802126

9. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), hep-
th/9802150

10. P. Argyres, R. Plesser, N. Seiberg, E. Witten, Nucl. Phys.
B 461, 71 (1996)

11. C.G. Callan Jr., J. Maldacena, Nucl. Phys. B 513, 198
(1998), hep-th/9708147

12. G.W. Gibbons, Nucl. Phys. B 514, 603 (1998), hep-
th/9709027

13. P.S. Howe, N.D. Lambert, P.C. West, Nucl. Phys. B 515,
203 (1998), hep-th/9709014

14. M. Reed, B. Simon, Methods of Modern Mathematical
Physics, vol. 2, Fourier Analysis, Self-Adjointness (Aca-
demic Press, New York 1975)

15. T. Cheon, T. Shigehara, Realizing Discontinuous Wave
Functions with Renormalized Short-Range Potentials,
quantum-ph/9709035

16. S. Lee, A. Peet, L. Thorlacius, Nucl. Phys. B 514, 161
(1998), hep-th/9710097

17. S.-J. Rey, J.-T. Yee, Nucl. Phys. B 526, 229 (1998), hep-
th/9711202

18. S.J. Avis, C.J. Isham, D. Storey, Phys. Rev. D 18, 3565
(1978)

19. P. Breitlohner, D.Z. Freedman, Phys. Lett. B 115, 197
(1982); Ann. Phys. 144, 197 (182)

20. S.-J. Rey, S. Theisen, J.-T. Yee, Nucl. Phys. B 527, 171
(1998), hep-th/9803135

21. M. Peskin, Phys. Lett. B 94, 161 (1980)
22. C. Codirla, H. Osborn, Ann. Phys. 260, 91 (1997)
23. D. Bak, S.-J. Rey, in preparation
24. H. Verlinde, A Matrix String Interpretation of Large-N

Loop Equation, hep-th/9705029
25. S. Dasgupta, S. Mukhi, Phys. Lett. B 423, 261 (1998),

hep-th/9711094; A. Sen, J. High-Energy Phys. 9803, 005
(1998), hep-th/9711130; M.R. Gaberdiel, B. Zwiebach,
Nucl. Phys. B 518, 151 (1998), hep-th/9709013; O.
Aharony, A. Hanany, B. Kol, J. High-Energy Phys. 9801,
2 (1998)

26. O. Bergman, Nucl. Phys. B 525, 104 (1998), hep-
th/9712211

27. S.-J. Rey, Phys. Rev. D 40, 3396 (1989); Phys. Rev. D 43,
526 (1991)

28. C. Kim, S.-J. Rey, Nucl. Phys. B 564, 430 (2000), hep-
th/9905205


